Control of a robot leg with an adaptive aVLSI CPG chip

نویسندگان

  • M. Anthony Lewis
  • Mitra J. Hartmann
  • Ralph Etienne-Cummings
  • Avis H. Cohen
چکیده

The rhythmic locomotion of animals, such as walking, swimming, and #ying, is controlled by groups of neurons called central pattern generators (CPGs). CPGs can autonomously produce rhythmic output, but under normal biological conditions make extensive use of peripheral sensory feedback. Models of CPGs have been used to control robot locomotion, but none of these models have incorporated sensory feedback adaptation.We have constructed an adaptive CPG in an analog VLSI chip, and have used the chip to control a running robot leg. We show that adaptation based on sensory feedback permits a stable gait even in an underactuated condition: the leg can be driven using a hip actuator alone while the knee is purely passive. 2001 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward Biomorphic Control Using Custom aVLSI CPG Chips

The locomotor controller for walking, running, swimming, and flying animals is based on a Central Pattern Generator (CPG). Models of CPGs as systems of coupled non-linear oscillators have been proposed and have been used for the control of robots. In this paper we describe the implementation of an adaptive CPG model in a compact, custom analog VLSI circuit. We demonstrate the function of the ch...

متن کامل

Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode

In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...

متن کامل

The Cerebellum Chip: an Analog VLSI Implementation of a Cerebellar Model of Classical Conditioning

We present a biophysically constrained cerebellar model of classical conditioning, implemented using a neuromorphic analog VLSI (aVLSI) chip. Like its biological counterpart, our cerebellar model is able to control adaptive behavior by predicting the precise timing of events. Here we describe the functionality of the chip and present its learning performance, as evaluated in simulated condition...

متن کامل

On the Role of Sensory Feedbacks in Rowat–Selverston CPG to Improve Robot Legged Locomotion

This paper presents the use of Rowat and Selverston-type of central pattern generator (CPG) to control locomotion. It focuses on the role of afferent exteroceptive and proprioceptive signals in the dynamic phase synchronization in CPG legged robots. The sensori-motor neural network architecture is evaluated to control a two-joint planar robot leg that slips on a rail. Then, the closed loop betw...

متن کامل

Adaptive RBF network control for robot manipulators

TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 38-40  شماره 

صفحات  -

تاریخ انتشار 2001